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APPLICATION OF THEODORSEN’S THEORY TO PROPELLER DESIGN

By Jomx L. CrIGLER

SUMMARY

A theoretical analysis is presented for obtaining by use of
Theodorsen’s propeller theory the load distribution along a
propeller radius fo gire the optimum propeller efficiency for
any design condition. The efficiencies realized by designing
for the optimum load distribution are given in graphs, and
the optimum efficiency for any design condition may be read
direetly from the graph without any laborious calculations.
Eramples are included to illustrate the method of obtaining the
optimum load distributions for both single-rotating and dual-
rotating propellers.

INTRODUCTION

Recent, contributions to the theory of propellers have been
made by Theodorsen in & series of reports (references I to 4).
In the first report of the series (reference 1) a method based
on electrical analogy was devised for obtaining the ideal
circulation functions for single-rotating propellers. These
circulation functions were shown to be in good agreement
with the theoretical calculations made by Goldstein in
reference 5 for two- and four-blade single-rotating propellers
and with the extrapolations to other numbers of blades
made by Lock and Yeatman in reference 6. The electrical-
analogy method of measuring these functions was also
applied to more difficult cases for which no theoretical
calculations had previously been made; in particular, to the
case of dual-rotating propellers.

Theodorsen in reference 1 introduced the concept of the
mass coefficient «, which isan integrated value of the circula-
tion funetions. The mass coefficient represents the effec-
tive cross section of the column of the medium pushed by
the propeller divided by the projected-propeller-wake area.

This mass coefficient is made use of in, the development of
Theodorsen’s theory. In reference 4, expressions are given
for computing the thrust, the energy loss, and the efficiency
of any propeller with ideal circulation distribution based on
the conditions in the final wake in terms of the mass coeffi-
cient. It is of interest to mention that the mass coefficient
or mass of air operated on by the dual-rotating propeller is
much greater than that affected by the singlerotating
propeller for the same set of operating conditions. This
large difference in the mass coefficients for the two cases
indicates that ecalculations for dual-rotating propellers
based on the ideal circulation functions for single-rotating
propellers are inadequate.

Theodorsen’s theory, as previously mentioned, is based on
the conditions in the final wake. The present analysis

attempts to interrelate the conditionsin the final wake to the
propeller and to give the information necessary to design a
propeller for any desired operating condition. For single-
rotating propellers, the method yields the same results as the
conventional vortex theory with the Goldstein tip corrections
applied. By the conventional vortex theory, however, it is
necessary to determine the optimum blade-load distribution
and then to make element strip-theory calculations in order
to obtain the optimum efficiency for a given design condition.
This procedure has been followed in reference 7 for a wide
range of operating conditions. By Theodorsen’s theory the
optimum efficiency 7 can be obtained directly for any design
condition from its relationship to the mass coefficient without
laborious calculations. Thus, in the selection of a propeller
for any design condition, a close estimate of the efficiency
can be obtained before the design is made.

The circulation funections and mass coefficients for the dual-
rotating propeller were obtained in reference 1 for the ideal
case and refer to conditions in the ultimate wake. Both
propellers were assumed to operate in the same plane. Ob-
viously, this condition is unatteinable in the design of an
actual propeller. The degree to which the ideal case can be
realized in practice, or the applicability of the ideal functions
to a given case, require further consideration and confirmation.

SYMBOLS
B number of propeller blades
b chord of propeller-blade element
€a section drag coefficient
€1 section lift coefficient

P, ideal power coefficient (c,+¢)

P., total-power coefficient (P,}-t;)
€ thrust coefficient 1 T
-2—pV’F '
€1y net thrust coefficient (c;—i,)
D diameter of propeller
d drag of propeller section
D, diemeter of wake helix surface

E ideal energy loss in wake <pF xw? (E w-i—% V))
E, energy loss due to blade drag

e induced energy loss coefficient 7 E
3 Py F
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projected area of helix (at infinity)

circulation funection

lift of propeller section

propeller rotational speed, revolutions per second
input power to propeller

tip radius . .

radius to any blade element

thrust of propeller

power loss due to drag (nondimensional)

axial power loss due to drag

rotational power loss due to drag

forward axial velocity of propeller

axial interference velocity (at propeller)

average axial interference velocity (at propeller)
resultant interference velocity (at propeller)
rotational interference velocity (at propeller)
average rotational interference velocity (behind each

=
—

SRSNEITO TR Y Ty @

propeller) e o _
W resultant velocity on the propeller at radius »
Ws local self-interference velocity
W rearward displacement velocity of helical vortex
surface i : - o
w ratio of displacement velocity to forward velocity
(w/V)
z radial location of blade element (r/R)
@ angle of attack, degrees
ay induced angle of attack, degrees
8 blade angle, degrees
. (1 V+w
X advance ratio (—; Do
Ag geometric advance ratio (V/mnD)
I
K mass coefficient (2 ﬁ K@)z da:)
£ axial energy loss fector
) propeller efficiency (%
7y ideal propeller efficiency (e,/P,)
o mass density of air
v propeller element solidity (Bb/2xr)

propeller element load coefficient
T circulation at radius z (I‘_(x) =&% K (2:))

¢ angle of resultant velocity W at plane of rotation
dp=tan~! V%D s

w angular velocity  _.

Subscripts:

F front

R rear

0.7R  at 0.7 radius

OPTIMUM PROPELLER DESIGN
SINGLE-ROTATING PROPELLERS

Velocity diagram.—The velocity diagram for the single-
rotating propeller is shown in figure 1. This figure is &
reproduction of figure 13 (reference 2) with some additional
designations. The relationship between the axial inter-
ference velocity at the radius r, as given by the vortex theory,
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FigURE 1.—Velocity diagram for single-rotating propeller.

to the displacement velocity w of the vortex sheet is caleu-
lated in reference 2 and is shown in figure 1. The forward
axial velocity of the propeller is T"and the tangential velocily
with respect to the air at rest is wr. The veetor BD is the
resultant interference velocity V; of the air with respect to
the air at rest. Thus, the resultant velocity 7 of a point on
the propeller at the radius 7 is given by the veetor CD. The
Lift force [ is perpendicular to this vector and the drag force
d is exactly opposite in direction to W™ as indicated. From
this figure a comparison of the method of analysis presented
herein may be made with the conventional vortex-theory
method. It is required to find the point I in order to Jocate
the end of the velocity vector 11" and the angle ¢ that the
vector W makes with the direction of rotation. By the
conventional vortex theory, the point D is located by starting
with point B obtained from the V/nD} of the undisturbed
flow, proceeding in the V-direction the distance Ve, and
then taking the perpendicular to this direction a distance

V.. (See reference 8.) The angle ¢ is given by
V+V, - VIV, . .
tan ¢=_"7 and W=-_. - ¢ Inthe caleulation of interfer-

ence velocities 1, and V, the local tip correction or Goldstein

factor must be used to obtain the corrcct location of the

point D. '
With the method developed in references 1 to 4, only the

1 . . . .
value of 3w, which remains constant with radius, need be

used. With this concept it is possible to use the integrated
values of the mass coefficient as determined by the electrical
analogy of reference 1 to obtain the detailed information
needed at any radius. By this method the point D can be

located by proceeding from point B a distance %w in the

V-direction to the point E and then down the direction of
the velocity vector TV a distance DE, where DE is obtained

from the geometry of the figure as -;-w sin ¢ and
1
T~
v 2

tan g=—"7rnr->-— - (1)
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The resultant velocity is

1

V+';)' w
W=—_sin~¢ —5 W sin ¢
Y (T +— w cos? ¢) @)

The interference velocities may be obtained from the geom-
etry of the figure by

V——w cos ¢

=V, cos ¢=% w cos’ep
and

V=1 sin ¢=% w sin ¢ cos ¢

Optimum blade-load distribution.—The design problem of
an optimum propeller consists essentially in obtaining the
value of the element load coefficient be; at each radius of the
propeller blade. With the direction and magnitude of the
relative velocity given at each station there remains only the
choice of a section to give efficiently such a lift at the appro-
priate angle of attack. The value of ¢; should be at or near
the ideal lift coefficient for the section in order to give
minimum drag coefficient.

The method developed in references 1 to 4 treats the
velocity w as an independent parameter upon which all the
other quantities depend. This reversal of procedure is con-
venient since all quantities are actually functions of w». The
velocity w is related to the power coefficient P, of the pro-
peller and also to the element load coefficient ¢¢;. The rela-
tion of w to o¢; is developed herein and the relation of w to
P., which must be obtained in order to use it for design, is
given subsequently in the section ‘‘Procedure for Propeller

Design.”
The required ideal circulation I'(z) is given in reference 1 by
r@ =200 g
(¥
= L0 ®)

In order to determine the element load coefficient be; the rela-
tion for the equality of the force on a vortex element and on
an element of a lifting surface is given as

pI‘W—— oW b

where & is the chord of the element. Hence,

r=1 e @)
where W is given in equation (2}, and thus

- 1
1"=é sm%p (I- +§ w cos’qs) e (5)

Using equations (3) and (5) for T gives at once the identity
(V—l—w)w 2 pin ¢

V-I-% w cosie

K(z)

Introducing the nondimensional velocity To’=%—2.- the

Bb g
solidity =52 and tan ¢= (equation (1)) gives the
xr 2
nondimensional relation
1+w o sin’p y
oK () 5l ©

(1+ 7) <1+—-wcos-qb)

The selection of a propeller for a given airplane installation
may be based on a method of evaluating a series of propellers
for various operating conditions in order to determine the
most suitable propeller. Itis probable that several propellers,
varying in diameter, blade number, propeller operationsal
speed, and direction of rotation are equally as efficient for
the design condition so that other considerations may enter
into the propeller selection. However, the optimum effi-
ciency for the propeller selected may be obtained from the
charts, and therefore the load distribution elong the radius
that will give this optimum efficiency remains to be
determined.

The value of ¢¢; may be calculated for any radius from the
relation

oC= 1—{—w 2wK (2:) cos¢
(1 += 'w) (1 + w cos’q&)
whera
1— j -
1 v itg® I+zw
$=tan™? =nD T=t—&'ﬂ_1 Ae z (7)

DUAL-ROTATING PROPELLERS

In the design of dusl-rotating propellers, it has been
customary to select two propellers designed for single
rotation and to use them as a dual-rotating propeller. The
fact that the circulation functions and the mass coefficients
obtained by the electrical-analogy method (reference 1)
are very much larger for the dual-rotating propeller than the
sum of the values for the two single-rotating propellers
indicates that the functions as used heretofore are not proper.
The electrical-analogy method represents the case of an
idealized dual-rotating propeller in which the two components
are in the same plane with the same load distribution on each
component and with equal power absorption. Since actual
propellers cannot conform to this ideal case, the applicability
of the ideal functions requires further confirmation. Never-
theless, the optimum distribution for the dual-rotating
propeller is essentially different from the single-rotating
propeller, and in this analysis the loading functions and the
mass coefficients as determined by the electrical-analogy
method are assumed to apply to the optimum dual-rotating
propeller.
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Interference velocities for dual-rotating propellers.—The
average axial interference velocity far behind the propeller
obtained from the momentum considerations is

217¢=x’w

where « is the mass coefficient and w is the axial displacement
velocity. This mean value is equally due to each of the two
oppositely rotating propellers. The average axial interfer-
ence velocity due to each is therefore exactly

T_.,a == KW

b} =

The average interference velocity at the propeller plane is
one-half the value in the final wake and, therefore,

1 1
5 Va=g 0

where % V. represents the average axial interference velocity

at the propeller plane due to each component of the dual-
rotating propeller. With the two propellers separated by
a small axial distance, this velocity refers to a plane between
the two propellers. The interference velocity at the front
propeller is smaller and at the rear propeller is larger than at
the plane between the propellers. In the following treat-
ment, the propellers are considered to be very close together
so that the axial interference velocity is the same on both
propellers.

In the final wake, the mean value of the rotational inter-
ference velocity for the ideal case is given by

2V,=0

For an infinite number of right and left blades equally loaded,
rotational components would cancel exactly. However, the
average rotational interference velocity immediately behind
each propeller may be considered as

V,=% «w ten ¢

In summary, the mean interference velocities acting on the
front propeller from the rear propeller are
Axial:

-%—Va= KW

Rotational:

V,=0

The mean interference velocities acting on the rear propeller
from the front propeller are
Axial:
S V=g
Rotational:

T—7,= xw tan ¢

[ SIE

It is useful to recognize that the mean self-interference of
each propeller in its own planc is

Axial:

) —

Rotational:

1
7 w tan ¢

Velocity diagram for the dual-rotating propellers. - The
velocity diagram for the dual-rotating propellers is shown
in figure 2. As in the case for the single-rotating propeller,
the axial displacement velocity at the propeller is equal to

1 . 1
5w In figure 2 the vector AB gives the mean axial inter-

ference velocity %m of each propeller acting on the other

propeller. The vector BC gives the mean rotational inter-

ference velocity —;-xw tan ¢ of the front propeller acting on

the rear propeller. The total interference velocity acting
on the front propeller from the rear propeller is therefore
given by AB, and the total interference velocity acling on the
rear propeller from the front propeller is equal to the veetor
AC. The local self-interference velocity of the fronl pro-
peller is given by Wy, and the corresponding helix angle is
given by ¢5. The local self-interference velocity of the rear
propeller is given by W, and the corresponding helix
angle is given by ¢z. The angle ¢p is slightly larger than
the ideal helix angle ¢ given by the displacement velocity

%w and ¢r is slightly smaller than ¢. The design condition

of most interest is the one for which Tr for each blade of the
front propeller is equal to Tg for each blade of the rear
propeller. The number of blades on the front and rear

wr —
F1aURE 2.—Veloclty diagram for Gual-rotating propeller.
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propeller are considered equal and the rotational speeds, the
same. This condition gives the self-interference velocity
on the front propeller equal to the self-interference velocity
on the rear propeller and means that D and E must be at
the same horizontal level.

As ¢ and ¢z are needed in the design of the propeller, it
is seen from figure 2 that the associated displacement velocity
on the front and rear propellers has been increased and
decreased, respectively, by the amount

A-w=£ xw tan’p

The displacement velocity is therefore

Front:
% ap (1 +‘13‘ K tan’qb)
Rear:
-1,; w (1—% x tan’qﬁ)
From figure 2, the velocity ¥y is shown to be given by the
relationship
Wr= Sl]: %‘l" KW 8in ¢
s % (1 + KW sin’ qso) (8)

and the angle ¢» is given by

V—l—l w (1 —l-% X ta.n’qb)

tan dp=
= 1 4—2 (1 +2 K tan’¢)] (9)
where ¢ is given by the relationship

V+l w

nD P (1 +2 w)
Similarly,
';.’
R—SIII %
"'{7
8D ¢o

+— xkw sin qbu-{-— xw tan ¢4 cos ¢,

+‘2‘Kw sin P

and
V-{-l w (1 —1 K ta.n’qs)

tan ¢p=

T illa(i-lew)]  ay

Optimum blade-load distribution.—The optimum distri-
bution of blade loading is obtained from the determination of
the element load coefficient be; at each radius from the funda-
mental relation

2 pbe =TT

where I' has been given in equation (3) by

Eliminating T gives
L Bhew=UT0 gy
bu t3 1 Bb—a is the solidity of each component of the dual-

rotatmg propeller, if the number of blades in each compo-
nent are assumed to be equal. Therefore,

agl; T=

For the front propeller, this equation may be solved by use
of equation (8)
Vi1g +")E sin ¢ () (12)

(O’Cz)p
nD = 1 +— XKW sin®epy

and for the rear propeller by use of equation (10)

Vi (1—[—")wsm¢oK(z) (13)

(O'Cz)x
nD =z 1+Z xi0 sinZe,g

USE OF DESIGN FORMULAS

In order to use the relation for g¢,, note that it contains not
only the independent variable % but also the function K(z)
and the angle ¢. The parameter K(z) should be expressed

as a function of Z_g;w: which is based on the wake helix

diameter. As was shown in reference 3, however, D, differs
only slightly from the propeller diameter D and in the present
design procedure D is used instead of D). The function
K(z) for single-rotating propellers is plotted against —~— Vi D in
figure 3. Similar plots for dual-rotating propellers were
taken from reference 1 and are presented in figure 4.

EQUATIONS FOR PERFORMANCE CALCULATIONS

SINGLE-ROTATING PROPELLERS

In reference 4 the thrust has been given by

T pFuw [V+w @4—5)]

and the ideal energy loss in the wake has been given by

E—pFat (f wts V)
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FiaurE 3.—Clrculation funetion K (r) for single-rotating propellers.
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(¢) Four-blade singlerotating propeller.

FicUtRE 3.—Continued.

(d) Six-blade single-rotating propeller.
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With the introduction of the nondimensional quantity E=ngw

the thrust coefficient in nondimensional form is

T
% PVIF

Cy=

— 2@ [1 + (%—1-5)] (14)
K
and the induced loss coefficient is

E
6=1
5 PV?F

oy %Jrfru) (15)
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F16URE 4.—Circulation function E(z) for dual-rotating propellt_!rl (reference 1). '
The power coefficient P.=¢,+e¢ is given by _
|
P,=2xw(1+z'a)(1+§ﬁ) (16)
The efficiency is given by _
cl ol
m= P: -(17)

These formulas are all that are necessary for single-
rotating propellers. The performance of the dual-rotating
propeller is computed by the same formulas.

DUAL-ROTATING PROPELLERS

The thrust of the front propeller is given by
d Tp=% K2x)Wei(oc)r cOS @p dr

and with (e¢;)» from equation (12) and Wy from equation (8)

Toep % VB %LK: +1 4 s'm-%) %ﬁ E@de
(18)
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(b) Efght-blade dualrotating propefler.
Fracrr 4.—Continued.

Similarly, for the rear propeller

1
T p'% VB4 & ﬁ (1 +2 sin’qso) % K@de
(19)

The coefficients ¢, ¢, and P, for the dual-rotating propellers
are given in the same form as in equations (14), (15), and
(16) for single-rotating propellers. The only difference in
the coefficients results from differences in the wvalues of
&, W, and ¢/x which are substituted in the equations.

BLADE-DRAG LOSSES

The frietionsal loss or loss in efficiency due to the profile
drag of the blade is

B
E,—B% J; beg T dr

The drag force per unit length is % pW2be; where TV, the

resultant velocity of the blade element, has been given in

10
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(¢) Twelve-blade dual-rotating propeller.
Fi6TRE 4.—Concluded.

equation (2) for single-rotating propellers by

. 1 1
For the design condition, w is smell, and because of the
obvious uncertainties in the determination of the value of ¢,

it is not necessary to retain the second term % w cos’¢. In-

troducing the solidity factor e=5_ Bb o Dermits the drag loss to

be given by

Ep=rRipV* f e ds

or m nondimensional form
t=—'E2__
2 pViR?

oC
=2 _f smig ¢ % (20)




92 REPORT 924—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

The component power losses are then, to the same degree
of approximation in nondimensiona] form,

Rotational:
__E_ 1 alq
b= ﬁ T e 1)
Axial:
_ 1 GCq
ta—2j; “n q5:1?(13: (22)

For the dual-rotating propeller operating at the design con-
ditions, the terms containing w are small, as is the case with
the single-rotating propeller, and a close approximation to
the drag loss is obtained if these terms are neglected. Fur-
thermore, if it is assumed that the average of the resultant
velocity W for the dual combination is equal to W for the
single propeller, equations (20) to (22) may be used for
the dual-rotating propellers. Of course, for conditions other
than the design condition, especially for very heavy loadings,
exact drag-loss calculations require that the exact equations
be used for either single-rotating or dual-rotating propellers.

In summary, the equations for obtaining the propeller
performance are given by the quantities ¢., ¢, and P, and
the drag-loss factors are given by ¢ and ..

The net thrust power is

Cop=Co—1o (23)
The power input is
PcT=ca+-e+tr=Pc+tr (24)
The efficiency is
p=lle i (25)
P+t P,
where from equation (16)
P,=2(1+79) (1+; T
The total power is also given by
=% pVzRP,,, (26)

It should be remembered that the calculation is based on
a given w. This procedure may seem unjustifiable since
this parameter is not given by the specification but is the
end result of a calculation based on the original data. The
induced loss does not depend on the total-power coefficient
P.,. but actually depends only on P, and the quantity @
cannot be obtained from the total-power coefficient. How-
ever, the value of P, in most cases exceeds P, by not more

than 2 percent or . B
P=0.98 P,

Since P, in equation (16) is based on % and the diameter
of the final wake and since the value of P, in cquation (24)

is based on the propeller diameter which is slightly larger
than the diameter of the final wake, a very close approxima-
tion to @ is usually given by equation (16). Therelore,

P, ~P.=20(1+7) (1 +£ ru)

In some cases it may be necessary to calculale £, to oblain a
more exact value of P, especially if the blade profile drag is
large.

PROCEDURE FOR DESIGN OF PROPELLER

FIGURES USED IN PROPELLER DESIGN

The information necessary to design a propeller for any
operating condition is given in the figures. Figure 3 gives
the circulation funection K(x) interpolated for even fractions
for 2-, 8-, 4-, 6-, and 8-blade single-rotating propellers. The
circulation function for the 2-blade propeller was {aken
directly from reference 5; for the 3-blade propelier, from
reference 6; and for the propellers having a grealer number of
blades was recalculated from the Goldstein tip corrcelion
factors as given in reference 7. Tigure 4 gives K(x) for dual-
rotating propellers with 4, 8, and 12 blades. These values
for the dual-rotating propellers were taken from data of ref-
erence 1. Figure 5 gives the mass coefficient = for various
numbers of blades for single-rotating propellers. Figure 6,
which was taken from reference 1, gives x for dual-rotaling

, propellers. The ideal efficiency 7. is plotted against & for a
range_of values ¢/x in figure 7, against ¢,/x in figure 8, and
against P./x in figure 9. The data for figures 7 and 8 were
taken directly from reference 4 and the data for figure § were
recalculated by the use of equation (16) and figure 7. Fig-
ures 7 to 9 apply to either single- or dualrotating propellers.
The propeller efficiency may be ealeulated from eithier of these
figures; however, in this report the cfficiency has been deter-
mined from P/ as given in figure 9.
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FIGURR §—Mass coefficlent » agalnst ‘;-i;ﬂ for various numbers of blades for aingle-rotating

propellers.
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FI16TRE 8.—Measured values of mass coefficient x for dual-rotating propellers with varfous
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ence 1;

Figure 10 gives values of ¢, x, and ¢k for 2- and 4-blade
single-rotating propellers and figure 11 gives values for 4-,
8-, and 12-blade dual-rotating propellers. The values of e
for a propeller with a finite number of blades have not pre-
viously been published, but the values of ¢ and ¢/« for an in-
finite number of blades are given in figure 4 of reference 4.
The method for calculating ek and e is given in the following
section.

PROPELLER SELECTION

In the selection of a propeller for & given airplane installa-
tion, the engine power, the forward speed, and the design
altitude are usually specified. The selection consists of the
determination of the number of blades, the propeller solidity,
the propeller diameter, and the rotative speed. The ideal
propeller efficiency for any combinations of these variables
can be readily obtained with the use of the charts. The
procedure for a given blade number, propeller diameter, and
rotative speed for either single or dual rotation is as follows:

First, calculate the total-power coefficient

P S

P
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—épV 4.Z)
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FIGURE 7.—Propeller efficlency sgainst w (reference 4).

and then use this value for the ideal coefficient

P.,~P.=2:5(1+%) (1 +¢ E)
to find w.

It was shown in reference 4 that the dependence of the
efficiency on e/k in the efficiency formulas is very small and
that it is sufficient to know only the approximate value of
¢/c. An examination of the formulas for ¢, and P shows that
their dependence on e/x is also small. It was further con-
cluded in reference 4 that efx is only slightly greater than «x
and that the practice of using e/x instead of x is considered
satisfactory for design purposes. However, there appears
to exist a simple relation between the axial-loss factor ¢ and
the total-loss factor . 'This relation takes on the form of a
differential equation

€ 1 xdk
PR
where
7\-—5 V+w
—T ’ﬂ.Do

This relation has been checked and found to be exact for
an infinite number of blades, and numerical checks for &
two-blade propeller were in very close agreement. It is
considered accurate for an empirical relation for design
purposes for propellers of other numbers of blades.
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First obtain

against% (1+w) for several values of % (figs. 5 and 6).

Ae

1V

“TaD
as a8 first approximation to M\ for use in the calculations.
Then read off «x and dk/d\ from the appropriate charts of «

2

C /k

F1avRE 8.—Propeller efficlency sgalnst ¢/x (reference 4),

Id
Curves of ¢, x, and ¢/x are plotted against ﬁ‘ﬁ (14-w) in fig-

ures 10 and 11. Next plota curve for the right side of the
equation for P, against w. Where this curve intersects (ho
horizontal line, P;=P,_ is the desired point. This value may
be checked from the chart by inserting the values obtained
from the plot in the equation. Thus are obtained x, %,
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1-55 (1+), and ¢/x. From the chart of P./x (fig. 9), the

optimum efficiency may be obtained.

The following examples illustrate the method of deter-
mining the optimum distribution of be; along the radius for
both single-rotating and dual-rotating propellers that give
the maximum possible efficiency (neglecting blade profile
drag) that can be obtained with either propeller for one
specified design condition.

ILLUSTRATIVE EXAMPLES

Single rotation.—Let the following data specify the
propeller design conditions:

Power, horsepOWer - - - o e 2,000
Density, slugs per eubie foot_______ 0.001065
Velocity, miles per hour_ o 425

The propeller selection has been made to the extent that the
following date specify the propeller:

Rotational speed, n, revolutions per second.- - oo .23
Propeller diameter, D, feet - ____ . _____ 12
Number of blades, B._ _ . e emeam 4
VinD oo e 2.258

The total P, from the given conditions is

P‘T=1_P__
§anrR2
(2000) (550)

=1 =0.075
§(0.001065) (623)%x(6)2
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(a) Two-blade single-rotating propelier.
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(b) Four-biasde glngle-rotating prapellvr.

FIGURE 10.—Valaes of ¢ and x for slngle—totaﬁnz propellers.

The value of Pe ghould be based on the wake diameter Dy
instead of on the propeller diameter D and should be used
to calculate . Both P. and the contraction may be ob-
tained by successive a,pproximations but the two effects
tend to cancel each other and generally P., based on the
prope]ler.diameter is sufficiently accurate to use in the cal-
culation of % The relation between % and P, is given by

equation (16) as

P,=25(1+T) (1 +5 m)

where

PP,

1{ values of W areé gelected to cover the range and the curve
for the {four-blade propeller in figure 10 (b) is used, the
following table is obtained for the four-blade single-rotating
propeller:

A plot of Pe against W gives 8 value of H=0.155 at P.=0.075.
Then,

H% (1475 = (2.268)(1.165) =281

From figure 10 (b), x 8 read ab ,;% (1 +w)=2.61, and the

optimum propeller efficiency M for a four-blade single-
rotating propelier ig read from fgure 9. Thus

k=0.201

f—°=0.373

K
and
m=0.929

With @ determined, ¢t for the gingle-rotating propeller
may be found by & direct caleulation from equation (6}

14w sinte

ae= 2EK(I) ——
<1+-1§ ’u?)( 1+-;—Tv cos’¢) cos ¢
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(a) Four-blade dusal-rotating propeller.

(b) Eight-blade dual-rotating propeller.

FiaURE 11.—Values of « and x for dual-rotating propellers.

Values of the circulation function K(x) at each stetion are
7
obtained from figure 8 (b) at % (1+w)=2.61 and the angle

of the relative velocity at the propeller is given for each
station by

Performing these caleulations for w=0.155 gives the values of
oc; and be; in the following table (the blade-width distribu-
tion, in feet, for a constant ¢; of 0.5 is also given):

[} bes

T tan ¢ EG) et ber [4i9} Bed van
ol 1.74 0.033 | 0.0842 § 0.079 0.158 0.167
.2 3.870 078 . 0067 .182 .364 . 386
.3 2.580 . 183 . 1054 .208 . 506 .631
4 1.935 185 . 1044 .33 786 .833
A L 548 225 . 0852 449 . 808 .02
.5 1.200 .260 . 0855 .483 . 966 L0223
.T 1. 106 271 .0716 .42 944 1 000
-8 .968 .7 . 0654 417 .834 -880
-9 .860 204 . 0384 .300 .618 . 656
.95 .815 -146 0241 .218 .432 458

024778 —51——8

Dual rotation.—The procedure is repeated for a 12-foot-~
diameter four-blade dual-rotating propeller for the same
design. conditions as used for the single-rotating propeller.
The following table is obtained for the four-blade dusal-
rotating propeller (values of x and ¢/x were found from

figure 11 (2)):

w © %3 P.
a 0. 472 0. 589 [
1 .432 54T . 1002
2 .398 . 518 .21

In this case a plot of P, against W gives & value of w=0.075
at P,=0.075. Therefore,

ETzfj (1+w)=2.426
x=0.442

&=O.170
K

and
7,~0.964
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(¢) Twelve-blade dual-rotating propeller.
F1aURE 11.—Concluded.

It is seen that the important parameter, the mass-flow
coefficient, is 0.442 for the dval-rotating propeller and is only
0.201 for the singlerotating propeller. The -efficiency
(without drag) is 96.4 percent for the dual-rotating propeller
but is only 92.9 percent for the single-rotating propeller.

For the dual-rotating propeller the values of ¢c; may be
found for the front component from equation (12); thus,

Vi (1+—)w sin ¢y
nD =z K()
1+Z KW Sin ¢q

(a'cz)p

and for the rear propeller from equation (13)

(e0)a=r1 = <11_+119_§1M_o K@)
-[—4 KW sine,

Equation (9) gives ¢r by

tan ¢p=1% %[1 +% w<1 +:,12- K tan’cfa):l

and ¢z is given in equation (L1) by

tan ¢R_nD o l:l —{- 1 —% K tan’d:)]

Values of the circulation function K(x) are obtained from
|4 |4

L= atm.
Performing these calculations for V=623, n=23, D=12,
w=0.075, and x=0.442 gives the values of tan ¢ and ¢, in
the following table:

figure 4 (a) at the appropriate value of

z E() | tangp | tangr | (ecdr (wedx | (bedr | Gedx
¢.1 0.620 10.768 4,145 0. 3510 0. 3460 0. 064 0. 054

.3 807 2.608 2363 1049 . 1088 <524 813

4 595 1.916 1,812 0748 . . 504

N & 1. 518 1. 465 0532 . 0526 301 4%

.8 535 1.258 L7 0373 . 0309 A22 {18

i 10756 L 056 0280 . 7285 378

.8 417 . 936 92 0200 . (0169 302 01

.8 317 .833 824 0126 L0126 214 214

.95 241 789 . 781 . 0088 0088 1567 157

A comparison of the optimum distribution of be; along the.
blade for the dual-rotating propeller from this table with.
the optlmum distribution for the single-rotating propeller;
as given in the prece(hng section shows that, if approxi-
mately constant ¢; is absorbed along the blade, wide dif-.
ferences in blade plan form will result for the two propellers;
designed for the same operating condition. For the operat-
ing conditions selected, the maximum be, for the single-:
rotating propeller occurs near the 0.6 radius and tapers rapidly-
toward the tip and the hub, being only slightly over 16
percent of its maximum value at the 0.1 radius. On the
other hand, the minimum value of b¢; for optimwmn distribu~
tion for the dual-rotating propeller occurs at the propeller
tip and progressively increases toward the inner radii. The
value of be; at the 0.1 radius is four times its value at the
0.95 radius.

Since the design of the dual-rotating propeller calls for
high loading over the inner sections, the efficiency of the dual-
rotating propeller is less susceptible to compressibility losses
which normally occur near the propeller tip for operation at
high tip Mach numbers. The compressibility losses may
be reduced by reducing the width of theso seclions or by
reducing the operating lift coefficient.

Effect of blade drag on efficiency—The loss in efliciency
due to the profile drag of the blades can be calculated from
equations (20) to (22) if the blade-width distribution and
profile-drag coefficients at the operating ¢; are known. Inas-
much as structural requirements may determine the shape
of the blade, especially over the inner radii, only ono cxample
is given. The equations, however, may be applied to any
plan form. The example selected is for the four-blade
single-rotating propeller on which the induced cfficiency has
been_previously calculated. The shank scctions of the
propeller blade were assumed to be round, similar to tha
Hamilton Standard Propeller No. 3155-6 and the blade
plan form from #=0.3 to #=1.0 was made optimum for a ¢;
of 0.5. The profile-drag coefficients for the several radii are
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the same as given in reference 7 for the Hamilton Standard
Propeller No. 3155-6 which has Clark Y sections and are
given in the following table. It is assumed that a spinner
covers the inner 0.2 of the radius. The distribution of
o¢; with z and of sin ¢ with z have been included in the table:

otd L

z oct -« cd sin ¢ Frvsd sin¢=‘
0.2 0. 0967 0. 1934 0. 400 0. 968 0. 01800 0. 00064
.3 . 1054 L2108 .100 .32 . 00897 . 00061
.4 1044 . 2088 020 .83 .00188 . 00030
.5 0052 L1904 -0t0 -840 . 00113 00028
.6 0855 1710 008 . 790 .00104 . 00037
.7 aris 1432 007 LT42 . 00095 - 00048
.8 0554 1108 - 006 . 696 0077 00049
.9 0364 0728 . 006 . 852 . 00060 . 00049

Performing the integrations and substituting in the for-
mulas gives for rotational-drag-loss coefficient

2 Lo alq
R

_kxx 02 SID ¢ 7 do

92
P

=0516 (0.000348)=0.0014

and for the axial-drag-loss coefficient

1.0
t.=2 J; 7% »dy

2 SID ¢

=2(0.00213) =0.0043

The induced thrust coefficient has been given by equa-
tion (14} as

6=2x |:1 +% (%Jrf)]
=2(0.201)(0.155) [1—[—0.155 (% + 0.29):[=0.0700
and the induced power coefficient by equation (16) as
P.=2¢w(1 +@(1 +§ o

=2(0.201)(0.155) (1.155) (1.045) =0.0754
The induced efficiency is

1’Ft="P‘7
__0.0700

o 09 =0.920
With drag included, the total thrust is given by
c.,.=c.—t,
=0.0700—0.0043=0.0657
and

Pcr=Pc+tr

=0.0754+-0.0014=0.0768

The efficiency is

 Cop 0.0657_
"=P,. 0.0768 -9

Thus it is seen that the blade drag of the magnitude given
in the preceding table reduces the propeller efficiency from
92.9 percent to 85.5 percent for the propeller operating
conditions given.

CONCLUDING REMARKS

A comparison of Theodorsen’s propeller theory with the
conventional vortex theory shows that the optimum load
distribution along the blade for single-rotating propellers
obtained by the two theories is essentially identical and as a
result the optimum efficiencies are the same for a given
operating condition. Theodorsen’s theoryhastheadvantage,
however, that the optimum efficiency for any design con-
dition can be obtained quickly and accurately by the use of
the mass coefficient, ¥ without any laborious calculations and
before the final design is made.

The distribution of the circulation function K(z} for the
idealized dual-rotating propeller is radically different from
the existing values for the single-rotating propeller that
have been previously used for the dual-rotating propeller.
Also, the mass coefficient « for the dual-rotating propeller
is larger than the sum of the values for two single-rotating
propellers. These quantities, which are not available from
mathematical computations but are obtained from the
electrical-analogy method of Theodorsen, are used herein
for obtaining the optimum load distribution along the blade
for the dual-rotating propeller.

LANGLEY AERONAUTICAL LLABORATORY,
NaTIioNAL ADVISORY COMMITTEE FOR AERONAUTICS,
LanereEy Fienp, Va., March 15, 1948.
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